Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121723, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35964353

RESUMO

Studying the stimuli-responsive properties of luminescent materials is important for their applications, while the luminescent materials studied up to now usually exhibit emission quenching and red shift in photoluminescence (PL) energy upon compression. Designing luminescent material with abnormal pressure responses remains challenging. Here, we report the discovery of abnormal luminescent properties of FCO-CzS upon compression. A theoretical study on the excited state decay process has been carried out for FCO-CzS at high pressure by hybrid quantum mechanics/molecular mechanics (QM/MM). A significant emission enhancement and blue shift are observed as pressure increases up to 20 GPa. This is opposite to the pressure response behaviours reported for other luminescent materials. It is further revealed that both the unique molecular configuration and the electronic structure change contribute to the anomalous pressure-responsive emission of FCO-CzS, which reduces the non-radiative rate and increases the radiative rate, respectively. Our study provides a strategy for the design of luminescent materials with desired pressure responses.


Assuntos
Luminescência , Simulação de Dinâmica Molecular , Eletrônica , Conformação Molecular
2.
Nanotechnology ; 31(16): 165701, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31846936

RESUMO

Host-guest structured nanocrystals consisting of p-But-calix[8]arene and fullerene C60 were fabricated with the facial solution deposition method. The as-prepared host-guest complex nanocrystals are well crystallized in a tetragonal structure, in which the guest C60 and host p-But-calix[8]arene molecules interact with each other via the van der Waals force. The host-guest crystal has a wider band gap compared to that of C60 crystals. The luminescence range of the host-guest structured nanocrystals was widely extended, and its photoluminescence (PL) intensity was highly enhanced by one order of magnitude. High pressure studies on such host-guest nanocrystals were carried out using the diamond anvil cell technique with the associated spectroscopic measurements. Raman and PL spectra show a phase transition occurred on the samples owing to the deformation of fullerene molecules. A PL behavior change was also observed synchronously with the phase transition. The host-guest structure strongly influences the structure and optical behaviors of C60 under pressure.

3.
J Chem Phys ; 142(3): 034702, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612720

RESUMO

Raman spectra of onion-like carbon nanospheres (OCNSs) have been studied under pressure up to 48 GPa. A transformation related to a change from sp(2) to sp(3) bonding of carbons in OCNSs was observed at pressures above 20 GPa. The Raman spectra exhibit some vibrational features similar to those of the theoretically proposed Z-carbon phase of cold-compressed graphite, while the transition pressure is obviously higher than that for graphite. In contrast to the transformations in compressed graphite, interlayer bonds are formed on the nanoscale between buckled layers in OCNSs under pressure due to the concentric configuration, and sp(2)-sp(3) conversion is incomplete even up to 48 GPa. This is confirmed by TEM observations on the decompressed samples. Moreover, the onion-like carbon structure is extremely stable and can be recovered even after a compression cycle to 48 GPa. This high stability, beyond that of other sp(2) carbon materials, is related to the unique onion-like configuration and to the interlayer bonding. The transformed material should have excellent mechanical properties so that it can sustain very high pressure.

4.
J Comput Chem ; 26(12): 1279-83, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15971232

RESUMO

The symmetry of the C20 cage is studied based on the intrinsical relationship among point groups (Bradley, C. J.; Cracknell, A. P. The Mathematical Theory of Symmetry in Solids; Claredon Press: Oxford, 1972). The structure of the C20 cage with I(h) symmetry is constructed, as are eight other structures with subgroup symmetry. A path from I(h) symmetry to C1 symmetry is obtained for the closed-shell electronic state, and the structure with D2h symmetry is the most stable on this path. Using the D2h structure the correlation energy correction is studied on the condition of restricted excitation space at the CCSD(T) level. We obtain curves on the relation between the orbital numbers and the total energy at the CCSD(T), CCSD, and MP2 level, respectively. The results of these curves obtained from MP2 and CCSD(T) methods have the same tendency, while the results of CCSD gradually diverge with an increase in orbital numbers. When the orbitals used in the calculation reach 460, the total energy is -759.644 hartree at MP2 level and is -759.721 hartree by the CCSD(T) method. From the calculation results, we find that a large basis set can improve the reliability of the MP2 method, and to restrict excitation space is necessary when using the CCSD(T) method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...